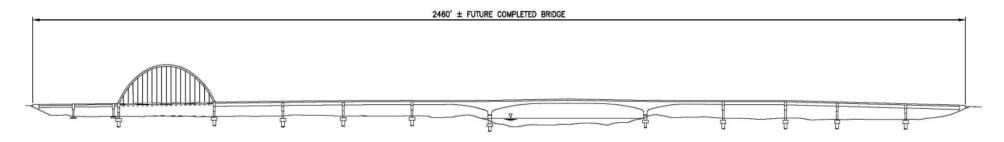
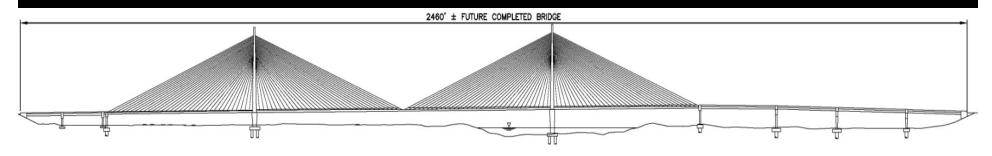
STEEL PYLON DESIGN FOR A CURVED CABLE-STAYED BRIDGE LOCATED IN A HIGH SEISMIC ZONE

Tom Whiteman, P.E. Shuangling Shang, PE Raj Bharil, PE, SE

Existing Bridges



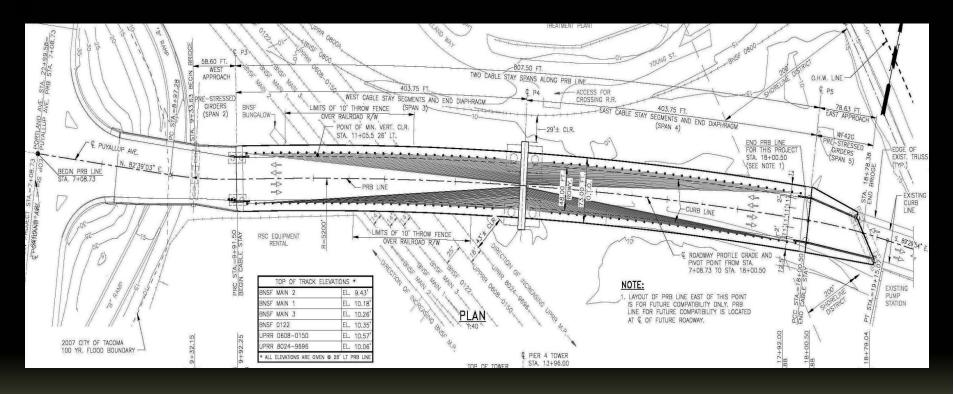
- Project Location Tacoma, Washington
- Replace old concrete viaducts and steel truss
- Heavy truck traffic route (Port to I-5 & downtown)



Bridge Type Options

ALTERNATE 1 - FUTURE COMPLETE BRIDGE REPLACEMENT

Alternate 1 - Arch with Viaduct



ALTERNATE 2 - FUTURE COMPLETE BRIDGE REPLACEMENT

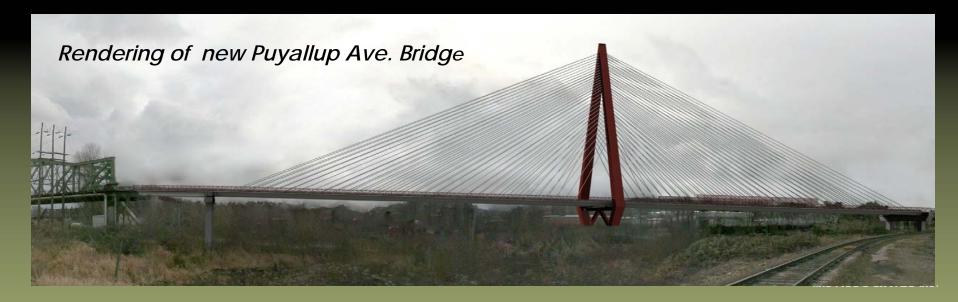
Alternate 2 - Cable Stay

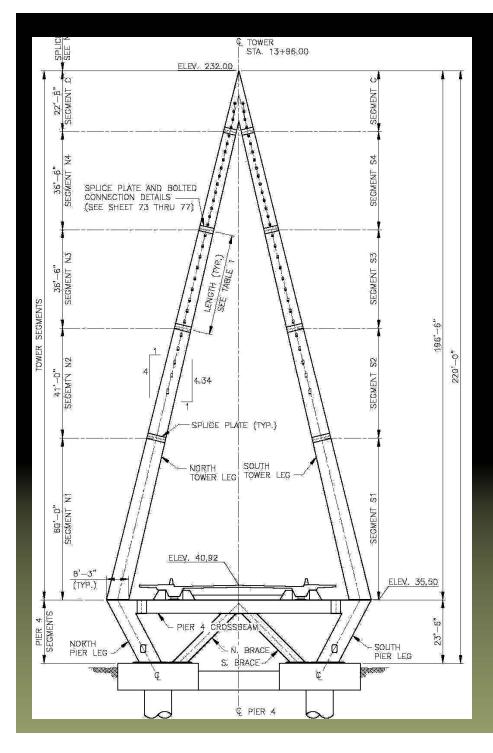
Design Issues 1

- Connect existing misaligned bridges
- Spans 6 railroad tracks at 45 degree skew
- 3 lanes to 4 lanes plus bike access

- Build new bridge in one year
- 3 hr RR closure windows
- Future RR expansion
- Phase 2 bridge compatibility
- Design costs
- Construction costs

Pylon Design Considerations


- Overall foundation footprint
- Structural behavior
- Aesthetics
- Costs
- Time to Build



Steel vs. Concrete Pylon

A-Frame Pylon

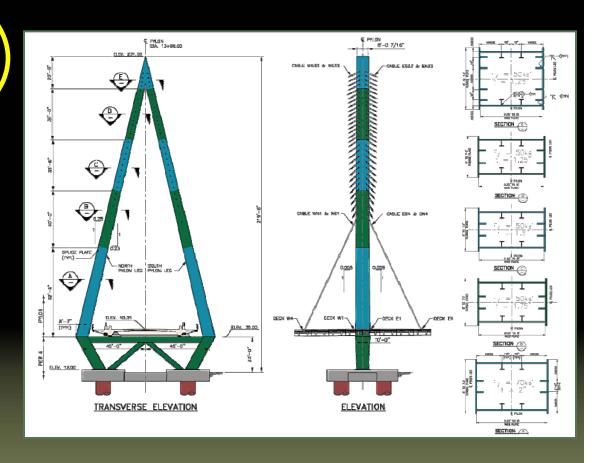
- Stable construction & final stages
- Resists lateral response from wind
- Resists lateral response from EQ
- Suits Steel Construction
- Strong and logical structural form

Principal Drivers Affecting Steel Pylon Costs

- Weight of steel
- Fabrication
- Constructability

Cost Drivers:

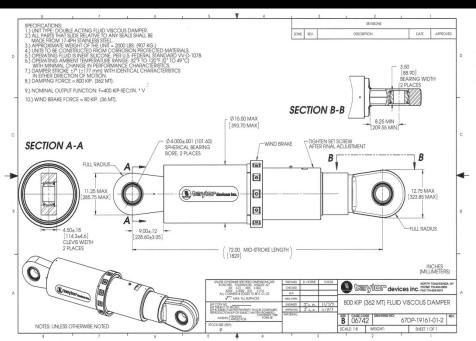
Weight

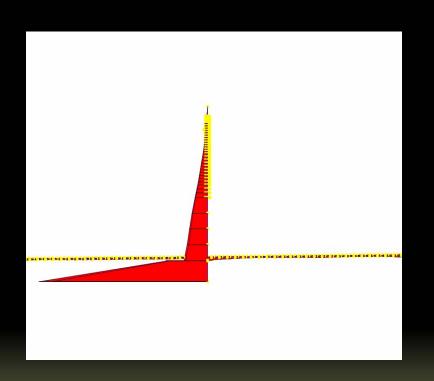

Height
Section
Plate Thickness

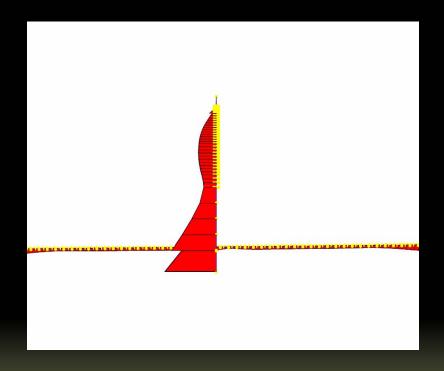
Fabrication

Simplicity
Repetition
Thinner Plates

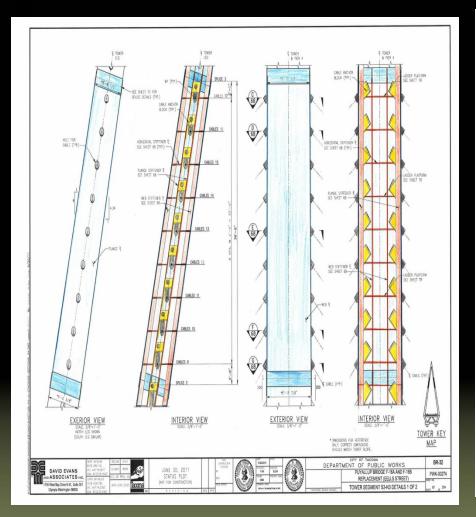
Constructability


Simplicity
Repetition
Segmentation


Pylon Dampers



800 k Viscous Dampers – Deck to Piers


Tower moments without dampers

Tower moments with dampers

Reducing Design Forces

Plate Thickness = F(stiffeners)

$$\left(\frac{L}{r}\right)_{eq} = \frac{a}{r_e}$$

$$\sqrt{6(1-v^2)} \frac{b}{t} \sqrt{\frac{1+(A_s/bt)}{1+\sqrt{(EL/bD)}}}$$

where

b = Nd = overall width of longitudinally stiffened panel

N = number of panels into which the longitudinal stiffeners divide the plate

 I_v = moment of inertia of section consisting of the stiffener plus a width of plate equal to d

 A_s = cross-sectional area of stiffener

$$D = \frac{Et^{3}}{12(1 - v^{2})}$$

$$\frac{\sigma_{c} = \pi^{2} E[1 + (a/\psi b)^{4}]}{(a/r_{x})^{2}}$$

Guide to Stability Design Criteria for Metal Structures, 5th Ed.

- Anchor Support
- Tension diaphragm

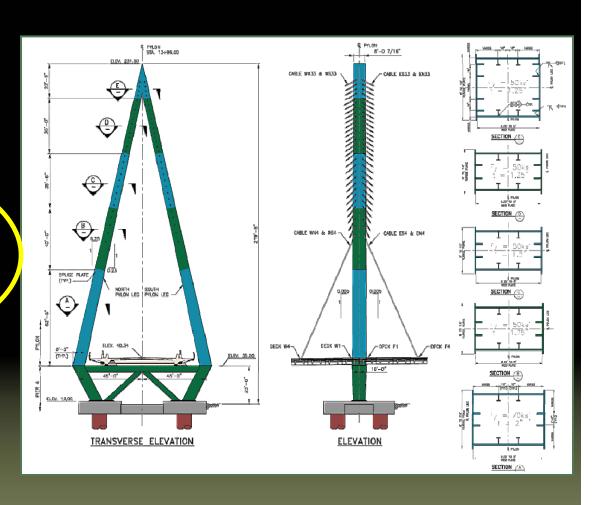
Vertical and horizontal buckling

Pylon Section

- KL/r ratio
- K value longitudinal direction
- K value transverse direction

KL tower
r tower

 KL plate
r plate

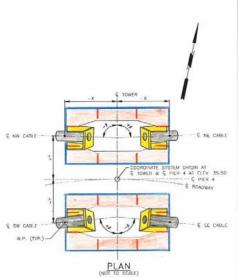

Cost Drivers:

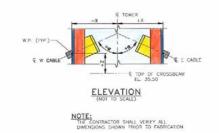
Weight
Section
Plate Thickness

Fabrication Simplicity
Repetition
Thinner Plates

Constructability

Simplicity
Repetition
Segmentation




Fabrication

(simple, repetitive)

CABLE NO.	ANCHOR TYPE	×	Y	Z	VERT.	HORZ.	PLATE DIN
CHOLL HV.	(STRANUS)	FT.	FT.	FT,	DEGREES	DEGREES	191.
4SW	12	-4.612	-26.415	113.00	63.37	1.73	13.54
55W	12	-4.582	-24.976	119.00	58.49	3.15	13.99
65W.	12	-4.557	-23.777	124.00	54.36	3.79	14.19
75W	12	-4.533	-22.578	129.00	51.02	4.25	14.34
BSW	12	-4.507	-21.379	134.00	48.27	4.60	14.45
BSW	12	-4,483	-20,180	139.00	45.99	4.87	14.53
105W	12	-4.453	-19.221	143.00	43.80	4.97	14.57
11SW	12	-4,443	-18.261	147.00	41.93	5.07	14.60
12SW	12	-4.422	-17.302	151.00	40.30	5.16	14.62
13SW	12	-4.402	-16.343	155.00	38.88	5.24	14.65
14SW	12	-4,382	-15.384	159.00	37.62	5.32	14.68
155W	12	-4.362	-14.424	163.00	36.52	5.40	14.70
165W	12	-4.342	13.465	167.00	35.53	5.48	14.73
175W	12	-4.322	-12.506	171.00	34.64	5.55	14.75
185W	12	-4.303	-11.547	175.00	33.B4	5.63	14.77
195W	12	-4.287	-10.827	178.00	32.93	5.64	14,78
205W	12	-4.273	-10.108	181.00	32.11	5.65	14.78
21SW	12	-4.257	-9.368	184.00	31.35	5.67	14.79
225W	12	-4.243	-8.669	187.00	30.65	5.70	14.80
235W	12	-4.227	-7.950	190.00	30.01	5.73	14.80
245W	12	-4.213	-7.230	193.00	29.41	5.76	14.81
255W	12	4.197	-6.511	196.00	28.86	5.79	14.83
26SW	12	-4.182	-5.791	199.00	28.34	5.83	14.84
27SW	12	-4,168	-5.072	202.00	27.87	5.87	14.85
285W	12	- 4,152	-4.353	205.00	27.42	5.91	14.86
295W	12	-4.138	-3.633	208.00	27.00	5.95	14.88
30SW	12	4.122	-2.914	211.00	26.6G	5.99	14.89
315W	12	-4.108	-2.250	214.00	26.24	6.03	14.90
325W	12	-4.092	-1.875	217.00	25.89	6.02	14.90
33SW	12	-4.078	-1.500	220.00	25.56	6.02	14.90

CABLE NO.	ANCHOR TYPE	×	Y	Z	VERT. ANGLE "a"	HORZ. ANGLE "#"	PLATE DIV
CHOCK 110.	(STRANDS)	FT.	FT.	FT.	DEGREES	DEGREES	IN.
ANE	12	4.612	26.415	113.00	62.81	2.76	13.87
5NE	12	4.582	24.976	119.00	57.83	3.66	14.15
ENE	12	4.557	23.777	124.00	53.62	3.93	14.24
ZNE	12	4.533	22.578	129.00	50.21	4.10	14.29
BNE	12	4.507	21.3/9	134.00	47.43	4.20	14.32
9NE	12	4.483	20.180	139.00	45.11	4.26	14.34
TONE	12	4.463	19.221	143.00	42.69	4.17	14.31
TINE	12	4.443	18.251	147.00	40.99	4.08	14.29
12NE	12	4.422	17.302	151.00	39.34	4.00	14.25
13NE	12	4,402	16,343	155.00	37.90	3.92	14.23
14NE	12	4.382	15.384	159.00	36.63	3.84	14.21
15NE	12	4.362	14.424	163.00	35.51	3.76	14.18
16NE	12	4.342	13,465	167.00	34.51	3.69	14,16
17NE	12	4.322	12.506	171.00	33.62	3.61	14,14
18NE	12	4.303	11.547	175.00	32,82	3.54	14.11
19NE	12	4.287	10.827	178.00	31.90	3.40	14.07
20NE	12	4.273	10.108	181.00	31.07	3.26	14.03
21NE	12	4.257	9.388	164.00	30.30	3.15	13.99
22NE	12	4.243	8.669	187.00	29.60	3.04	13.96
23NE	12	4.227	7.950	190.00	28.95	2.93	13.92
24NE	12	4.213	7.230	193.00	28.35	2.82	13.89
25NE	12	4.197	6.511	196,00	27.80	2.71	13.85
26NE	12	4,182	5.791	199.00	27.28	2.61	13.82
27NE.	12	4,168	5.072	202.00	26.80	2.51	13.79
28NE	12	4.152	4.353	205.00	26.35	2.42	13.76
29NE	12	4,138	3.633	208.00	25.93	2.32	13.73
SONE	12	4.122	2.914	211.00	25.53	2.23	13.70
SINE	12	4.108	2.250	214.00	25.16	2.13	13.67
32ME	12	4.092	1.875	217.00	24.82	1.99	13.62
SSNE	12	4.078	1.500	220.00	24.49	1.85	13.58

CABLE NO.	ANCHOR TYPE	ж	Y	z	VERT.	HORZ.	PLATE DOV
	(STRANDS)	FT.	FT.	FT.	DEGREES	DEGREES	IN.
45F	12	4.612	-26,415	113.00	63.11	-1.73	13.54
SSE	12	4.582	-24.976	119.00	58.15	-3.15	13.99
6SE	12	4.557	-23.777	124.00	53.94	-3.79	14.19
7SE	12	4.533	-22.578	129.00	50.53	-4.25	14.34
BSE	12	4,507	-21.379	134.00	47.73	-4.60	14,45
9SE	12	4.483	20.180	139.00	45.41	-4.87	14.53
10SF	12	4.463	-19.221	143.00	43.18	-4.97	14,57
115E	12	4.443	-18.261	147.00	41.26	-5.07	14.60
12SE	12	4,422	-17.302	151.00	39.61	-5.16	14.62
135F	12	4.402	-16.343	155.00	38.16	-5.24	14.65
149E	12	4.382	-15.384	159.00	36.88	-5.32	14.58
15SF	*2	4.362	-14.424	163.00	35.75	-5,40	14.70
165F	12	4.342	-13.465	167.00	34.75	-5.48	14.73
179E	12	4.322	-12.506	171.00	33.84	-5.55	14.75
18SE	12	4.303	-11.547	175.00	33.03	-5.63	14.77
19SE	12	4.287	-10.827	178.00	32.11	-5.64	14.78
ZOSE	12	4.273	-10,108	181.00	31.27	-5.55	14.75
21SE	12	4.257	-9.388	184.00	30.49	-5.67	14.79
22SE	12	4.243	-8.669	187.00	29.78	-5.70	14,80
235€	12	4.227	-7.950	190.00	29.13	-5.73	14,80
24SE	12	4.213	-7.230	193.00	28.53	-5.76	14,81
25SE	12	4,197	-6.511	196.00	27.96	-5.79	14.83
26SE	12	4.182	-5.791	199.00	27.44	-5.83	14.84
27SE	12	4.168	-5.072	202.00	26.96	-5.87	14.85
28SE	12	4.152	-4.353	205.00	26.50	-5.91	14.86
295E	12	4.138	-3.633	208.00	26.07	-5.95	14.88
30SE	12	4,122	-2.914	211.00	25.68	-5.99	14.89
315E	12	4.108	-2.250	214.00	25.30	-6.03	14.90
325E	12	4.092	-1.875	217.00	24.95	-6.02	14.90
335E	12	4.078	-1.500	220.00	24.52	-6.02	14.90

M	DAVID EVANS
шш	1115 West Bay Drive N.W., Suite 301 Obmole Weshington 98502

4	BNSF MP36.66 HDT# 0657121 (AT 847'14,5671' LON, #127'24,5616'				
	UPRR MP146,43 DOT# 808725A LAT, N4714,5700				

	X 1. 300	
ST.	10	
	1	

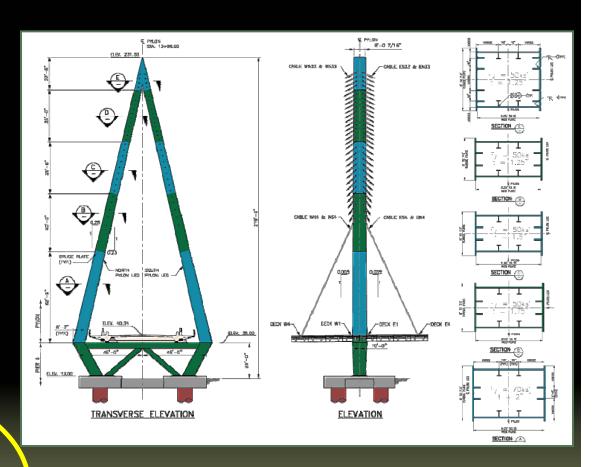
DEPA	RTMENT OF PUBLIC WORKS
	PUYALLUP BRIDGE F-16A AND F-16B REPLACEMENT (EELLS STREET)
PROMERSO OWNER WHIST	PIER 4 TOWER ANCHOR BLOCK 2

PWK-00274

ANCHOR BLOCK DETAILS

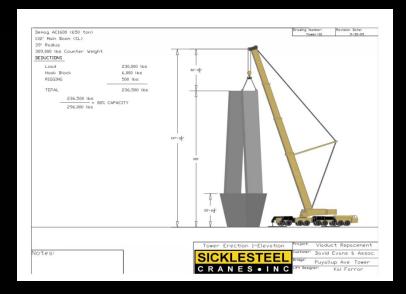
Cost Drivers

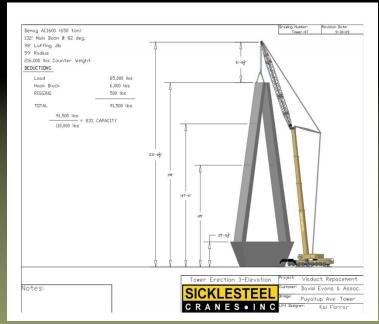
Weight

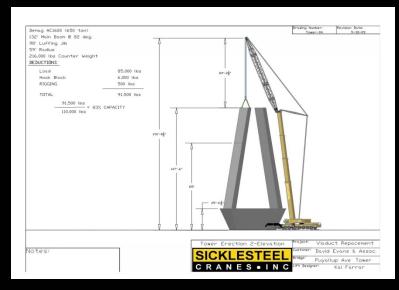

Height
Section
Plate Thickness

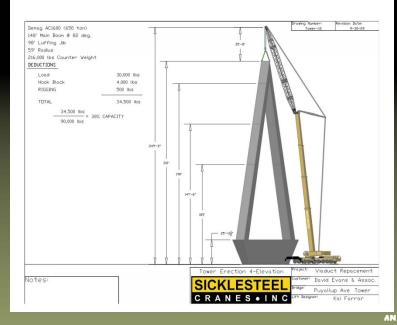
Fabrication

Simplicity
Repetition
Thinner Plates


Simplicity
Repetition
Segmentation


Constructability





Pylon Erection

Thank You

NSBA - National Steel Bridge Association

Brad Murphy - Thompson Metal Fabrication, Inc.

Kai Farrar - Sicklesteel Cranes, Inc.

Craig Keller - Taylor Devices, Inc. - Damper devices

Steve Seguirant - Concrete Technologies, Tacoma

Jodi Wills - David Evans Associates- Assistance with presentation

References

Guide to Stability Design Criteria for Metal Structures, 5th Edition Theodore Galambos AASHTO LRFD Bridge Design Specifications, 5th Edition

